Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Neuropeptides ; 104: 102409, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244260

RESUMO

N-methyl-D-aspartic acid receptors (NMDARs) are the most studied receptors in mammalian brains. Their role in depression, cognition, schizophrenia, learning and memorization, Alzheimer's disease, and more is well documented. In the search for new drug candidates in depression, intensive studies have been conducted. Compounds that act by influencing NMDARs have been particularly intensively investigated following the success of ketamine in clinics. Unfortunately, the side effects associated with ketamine do not allow it to be useful in all cases. Therefore, it is important to learn about new unknown mechanisms related to NMDAR activation and study the impact of changes in the excitatory synapse environment on this receptor. Both direct and intermediary influence on NMDARs via mGluRs and COX-2 are effective. Our prior studies showed that both mGluRs ligands and COX-2 inhibitors are potent in depression-like and cognitive studies through mutual interactions. The side effects associated with imipramine administration, e.g., memory impairment, were improved when inhibiting COX-2. Therefore, this study is a trial that involves searching for modifications in NMDARs in mouse brains after prolonged treatment with MTEP (mGluR5 antagonist), NS398 (COX-2 inhibitor), or imipramine (tricyclic antidepressant). The prefrontal cortex (PFC) and hippocampus (HC) were selected for PCR and Western blot analyses. Altered expression of Gin2a or Grin2b genes after treatment was found. The observed effects were more potent when COX-2 was inhibited. The finding described here may be vital when searching for new drugs acting via NMDARs without the side effects related to cognition.


Assuntos
Ketamina , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Ketamina/farmacologia , Imipramina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo , Mamíferos/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894946

RESUMO

Depression is a serious neuropsychiatric disease affecting an increasing number of people worldwide. Cognitive deficits (including inattention, poor memory, and decision-making difficulties) are common in the clinical picture of depression. Cognitive impairment has been hypothesized to be one of the most important components of major depressive disorder (MDD; referred to as clinical depression), although typical cognitive symptoms are less frequent in people with depression than in people with schizophrenia or bipolar disorder (BD; sometimes referred to as manic-depressive disorder). The importance of α-Klotho in the aging process has been well-documented. Growing evidence points to the role of α-Klotho in regulating other biological functions, including responses to oxidative stress and the modulation of synaptic plasticity. It has been proven that a Klotho deficit may contribute to the development of various nervous system pathologies, such as behavioral disorders or neurodegeneration. Given the growing evidence of the role of α-Klotho in depression and cognitive impairment, it is assumed that this protein may be a molecular link between them. Here, we provide a research review of the role of α-Klotho in depression and cognitive impairment. Furthermore, we propose potential mechanisms (related to oxidative stress and glutamatergic transmission) that may be important in α-Klotho-mediated regulation of mental and cognitive function.


Assuntos
Disfunção Cognitiva , Transtorno Depressivo Maior , Humanos , Glucuronidase , Depressão , Ácido Glutâmico , Transmissão Sináptica
4.
Neurosci Biobehav Rev ; 155: 105439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898448

RESUMO

The lipid endocannabinoid system refers to endogenous cannabinoids (eCBs), the enzymes involved in their synthesis and metabolism, and the G protein-coupled cannabinoid receptors (GPCRs), CB1, and CB2. CB1 receptors (CB1Rs) are distributed in the brain at presynaptic terminals. Their activation induces inhibition of neurotransmitter release, which are gamma-aminobutyric acid (GABA), glutamate (Glu), dopamine, norepinephrine, serotonin, and acetylcholine. Postsynaptically localized CB1Rs regulate the activity of selected ion channels and N-methyl-D-aspartate receptors (NMDARs). CB2Rs are mainly peripheral and will not be considered here. Anandamide metabolism, mediated by cyclooxygenase-2 (COX-2), generates anandamide-derived prostanoids. In addition, COX-2 regulates the formation of CB1 ligands, which reduce excitatory transmission in the hippocampus (HC). The role of CB1Rs and COX-2 has been described in anxiety, depression, and cognition, among other central nervous system (CNS) disorders, affecting neurotransmission and behavior of the synapses. This review will analyze common pathways, mechanisms, and behavioral effects of manipulation at the CB1Rs/COX-2 level.


Assuntos
Canabinoides , Endocanabinoides , Humanos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Receptores de Canabinoides , Endocanabinoides/metabolismo , Transmissão Sináptica , Canabinoides/farmacologia , Receptor CB1 de Canabinoide
5.
Bioorg Chem ; 141: 106903, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827015

RESUMO

The serotonin 1A (5-HT1A) receptors and serotonin transporter (SERT) are important biological targets in the treatment of diseases of the central nervous system, especially for depression. In this study, new 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives linked with the 3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole moiety were synthesised and evaluated for their affinity for 5-HT1A receptor and serotonin reuptake inhibition. Selected compounds were then tested for their affinity for D2, 5-HT2A, 5-HT6 and 5-HT7 receptors, and also in in vitro metabolic stability assays in human microsomes. Finally, in vivo assays allowed us to evaluate the agonist-antagonist properties of pre- and postsynaptic 5-HT1A receptors. 3-(1-(4-(3-(5-methoxy-1H-indol-3-yl)-2,5-dioxopyrrolidin-1-yl)butyl)-1,2,3,6-tetrahydropyridin-4-yl)-1H-indole-5-carbonitrile (4f) emerged as the most promising compound from the series, due to its favourable receptor binding profile (Ki(5-HT1A) = 10.0 nM; Ki(SERT) = 2.8 nM), good microsomal stability and 5-HT1A receptor agonistic activity.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Indóis/química , Agonistas do Receptor de Serotonina/farmacologia , Relação Estrutura-Atividade
6.
Cell Commun Signal ; 21(1): 251, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735683

RESUMO

The treatment of depression with pharmaceuticals is associated with many adverse side effects, including male fertility problems. The precise mechanisms by which these agents affect testicular cells remain largely unknown, but they are believed to induce cellular stress, which is sensed by the endoplasmic reticulum (ER) and the Golgi apparatus. These organelles are responsible for maintaining cellular homeostasis and regulating signal pathways that lead to autophagy or apoptosis. Therefore, in this study, we aimed to investigate the autophagy, ER, and Golgi stress-related pathways in mouse testis following treatment with antidepressant-like substances (ALS) and ALS combined with lipopolysaccharide (LPS). We found that most ALS and activated proteins are associated with the induction of apoptosis. However, when imipramine (IMI) was combined with NS-398 (a cyclooxygenase-2 inhibitor) after LPS administration, we observed a marked increase in the BECLIN1, Bcl-2, ATG16L, and LC3 expression, which are marker proteins of autophagosome formation. The expression of the BECN1 and ATG16L genes was also high compared to the control, indicating the induction of autophagy processes that may potentially protect mouse testicular cells from death and regulate metabolism in the testis. Our findings may provide a better understanding of the stress-related effects of specific ALS on the testis. Video Abstract.


Assuntos
Lipopolissacarídeos , Animais , Masculino , Camundongos , Antidepressivos/farmacologia , Autofagia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Testículo
7.
J Trace Elem Med Biol ; 79: 127226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37257334

RESUMO

Trace elements or trace metals are essential components of enzymes, proteins, hormones and play a key role in biochemical processes, cell growth and differentiation, as well as in neurotransmission, affecting human physiology. In nature there are also heavy metals that exhibit toxic effects on the human body, including the brain. The importance of trace elements has been established in neurodegenerative disorders, schizophrenia, depression among others. In parallel, an important regulatory element in the above diseases is cyclooxygenase-2 (COX-2), a modulator of the arachidonic acid (AA) pathway, and a cause of neuroinflammation, and glutamate (Glu) dysregulation, affecting calcium (Ca) metabolism in cells. This review presents the effects of major trace elements and heavy metals on COX-2 expression. Calcium (Ca), zinc (Zn), cadmium (Cd), vanadium (V), nickel (Ni), copper (Cu), and iron (Fe) can potentially increase COX-2 expression, inducing neuroinflammation and Glu excitotoxicity; while magnesium (Mg), lithium (Li), and selenium (Se) can potentially decrease COX-2 expression. The associated mechanisms are described in the article.


Assuntos
Metais Pesados , Oligoelementos , Humanos , Oligoelementos/metabolismo , Ciclo-Oxigenase 2 , Cálcio , Doenças Neuroinflamatórias , Metais Pesados/toxicidade , Cádmio , Plasticidade Neuronal
8.
Neuropeptides ; 100: 102347, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182274

RESUMO

The strength and quality of the signal propagated by the glutamate synapse (Glu) depend, among other things, on the structure of the postsynaptic part and the quality of adhesion between the interacting components of the synapse. Postsynaptic density protein 95 (PSD95), mammalian target of rapamycin (mTOR), and Down syndrome cell adhesion molecule (DSCAM) are components of the proper functioning of an excitatory synapse. PSD95 is a member of the membrane-associated guanylate kinases protein family, mainly located at the postsynaptic density of the excitatory synapse. PSD95, via direct interaction, regulates the clustering and functionality of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors at a synapse. Here, the effects of treatment with an antagonist of mGluR5 (MTEP) and NS398 (cyclooxygenase-2, COX-2 inhibitor) on PSD95, mTOR, and DSCAM in the hippocampus (HC) of C57B1/6 J mice using Western blots in the context of learning were examined. Moreover, the sensitivity of selected proteins to lipopolysaccharide (LPS) was monitored. MTEP injected for seven days induced upregulation of PSD95 in HC of mice. The observed effect was regulated by a COX-2 inhibitor and concurrently by LPS. Accompanying alterations in DSCAM protein were found, suggesting changes in adhesion strength after modulation of glutamatergic (Glu) synapse via tested compounds.


Assuntos
Síndrome de Down , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Lipopolissacarídeos/farmacologia , Memória de Curto Prazo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/metabolismo , Síndrome de Down/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Moléculas de Adesão Celular/metabolismo , Mamíferos/metabolismo
9.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108266

RESUMO

Mental disorders and substance use disorders affect approximately 13% of the world's population [...].


Assuntos
Transtornos Mentais , Transtornos Relacionados ao Uso de Substâncias , Humanos , Transtornos Mentais/genética , Transtornos Mentais/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/genética
10.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982145

RESUMO

The brain functions through neuronal circuits and networks that are synaptically connected. This type of connection can exist due to physical forces that interact to stabilize local contacts in the brain. Adhesion is a fundamental physical phenomenon that allows different layers, phases, and tissues to connect. Similarly, synaptic connections are stabilized by specialized adhesion proteins. This review discusses the basic physical and chemical properties of adhesion. Cell adhesion molecules (CAMs) such as cadherins, integrins, selectins, and immunoglobulin family of cell adhesion molecules (IgSF) will be discussed, and their role in physiological and pathological brain function. Finally, the role of CAMs at the synapse will be described. In addition, methods for studying adhesion in the brain will be presented.


Assuntos
Moléculas de Adesão Celular , Selectinas , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Selectinas/metabolismo , Integrinas/metabolismo , Encéfalo/metabolismo
11.
Arch Biochem Biophys ; 737: 109555, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842491

RESUMO

This study aimed to evaluate research findings on the role of polyunsaturated fatty acids (PUFAs) in neuronal signaling. Polyunsaturated fatty acids (PUFAs) are the building blocks of the brain and are responsible for the proper functioning of neurons, synapses, and neuronal communication. The deficiency of a significant component, omega-3 (ω-3) FA, in favor of omega-6 (ω-6) FA can exacerbate the course of mental illness and be one of the triggers of the cascade of neurodegenerative changes. PUFAs play an essential role in transmitting neuronal signals, affecting brain homeostasis. Physicochemical parameters of lipid layers significantly affect their functioning; interactions between lipids and proteins in brain cells are critical for mechanical stability and maintaining adequate elasticity for vesicle budding and membrane fusion. This paper discusses the role of PUFA deficiency or inappropriate ratios in brain tissue. The deficiency is a crucial element in depressive disorders and cognitive impairment, while in Alzheimer's disease, there is some controversy.


Assuntos
Depressão , Ácidos Graxos Ômega-3 , Ácidos Graxos Insaturados/metabolismo , Encéfalo/metabolismo , Cognição
13.
Front Pharmacol ; 13: 988648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278184

RESUMO

Depression is a severe mental health problem that affects people regardless of social status or education, is associated with changes in mood and behavior, and can result in a suicide attempt. Therapy of depressive disorders is based mainly on drugs discovered in the 1960s and early 1970s. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are frontline pharmacological strategies for the medical treatment of depression. In addition, approved by FDA in 2019, esketamine [as nasal spray; N-methyl-D-aspartate (NMDA) receptors antagonist with additional effects on α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, L-type voltage-dependent calcium channel (L-VDCC), opioid receptors, and monoaminergic receptors] is an essential compound in suicide and drug-resistant depression. However, the treatment of depression is burdened with severe side effects, and in many cases, it is ineffective. An equally important issue is the choice of antidepressant therapy in people with comorbid somatic diseases, for example, due to possible interactions with the patient's other drugs. Therefore, there is a great need for new antidepressants with different mechanisms of action and the need to refine the search for new substances. The purpose of this review was to discuss new research directions and new trends that dominate laboratories worldwide. We have reviewed the literature to present new points on the pharmacological target of substances with antidepressant activity. In addition, we propose a new perspective on depressive therapies.

14.
Neurochem Int ; 159: 105391, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35817245

RESUMO

PSD-95 is a component and a building block of an excitatory synapse. PSD-95 is a specialized protein that is part of a "combination lock" system responsible for plastic events at the synapse, such as receptor expression, which consequently induces changes in the PSD structure and thus affects synaptic plasticity. The possible involvement of PSD-95 in antidepressant side effects related to cognitive function and psychosis will be considered. An attempt will be made to trace the sequence of events in the proposed mechanism leading to these disorders, focusing mainly on NMDA receptors. Understanding the mechanisms of action of compounds with antidepressant potential may facilitate the design of safer drugs.


Assuntos
Receptores de N-Metil-D-Aspartato , Sinapses , Antidepressivos/efeitos adversos , Proteína 4 Homóloga a Disks-Large/metabolismo , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
15.
Toxicol Res ; 38(2): 175-186, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35415080

RESUMO

The increasing number of depression cases leads to a greater need for new antidepressant treatment development. It is postulated that antidepressants may harm male fertility, but the cellular mechanism is still poorly understood. The role of growth factors and klotho protein in maintaining normal male reproductive function is well documented. Hence, the study aimed to investigate the effect of the antidepressant drug - imipramine (tricyclic AD), and other substances with antidepressant potential (ALS), administered in combination or in combination with LPS (an animal model of depression) on gene expression and protein synthesis of IGF-2 (insulin-like growth factor 2), TGF-ß1 (transforming growth factor ß1), NGF (nerve growth factor), KGF (keratinocyte growth factor) and protein synthesis of VEGF-A (vascular endothelial growth factor A), IGF-IR (insulin-like growth factor receptor 1), EGFR (epidermal growth factor receptor) and klotho in the testis of mice. Mice were injected intraperitoneally with selected ALS and LPS or 10% DMSO (controls) (n = 7/group) once a day for 14 days. Animals were decapitated and testes collected for RNA and protein purification. PCR and western blot methods were employed for the evaluation of growth factors and klotho expression. The results obtained indicated a decreased level of most of the analyzed genes and proteins, except KGF; its expression increased after treatment with MTEP and IMI administrated individually and after NS-398, and IMI in combination with LPS. Our results may suggest that the tested ALS and LPS can contribute to a reduction of male fertility, but NS-398, IMI, and IMI+NS-398 may also act as stimulants after LPS.

16.
Neurochem Int ; 150: 105193, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34571049

RESUMO

Imipramine belongs to a group of tricyclic antidepressants (TCAs). It has been also documented that its antidepressant activity connects with the modulation of cytosolic phospholipase A2 (cPLA2) and arachidonic acid (AA) turnover. Through this mechanism, imipramine can indirectly modify glutamate (Glu) transmission. Additionally, it has been shown that chronic treatment with imipramine results in the upregulation of the metabotropic glutamate receptor subtype 5 (mGlu5 receptor) in the hippocampus of rats. Our previous study revealed that manipulation of the AA pathway via inhibition of cyclooxygenase-2 (COX-2) by selective COX-2 inhibitor (NS398) could effectively modulate the behavior of mice treated with imipramine. Here, we hypothesized that COX-2 inhibition could similarly to imipramine influence mGlu5 receptor, and thus NS398 can modulate the effect of imipramine on Glu. Moreover, such regulation changes should correspond with alterations in neurotransmission. Increased cPLA activity after imipramine administration may change the activity of the AA pathway and the endocannabinoid metabolism, e.g., 2-Arachidonyl-glycerol (2-AG). To verify the idea, mGlu5 receptor level was investigated in the hippocampus (HC) and prefrontal cortex (PFC) of mice treated for 7 or 14 days with imipramine and/or COX-2 inhibitor: NS398. Western blot and PCR analyses were conducted. Moreover, the excitatory (Glu) and inhibitory (gamma-aminobutyric acid; GABA) neurotransmitters were measured using HPLC and 2-AG using ELISA. A time-dependent change in mGlu5 receptor and COX-2 protein level, COX-2 expression, and 2-AG level in the PFC after imipramine administration was found. Up-regulation of mGlu5 receptor after NS398 was found in HC and PFC. A structure-dependent shift between excitatory vs. inhibitory transmission was detected when NS398 and imipramine were co-administered.


Assuntos
Encéfalo/metabolismo , Ciclo-Oxigenase 2/biossíntese , Imipramina/farmacologia , Nitrobenzenos/farmacologia , Receptor de Glutamato Metabotrópico 5/biossíntese , Sulfonamidas/farmacologia , Regulação para Cima/fisiologia , Inibidores da Captação Adrenérgica/farmacologia , Animais , Antidepressivos Tricíclicos/farmacologia , Encéfalo/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Glutamato Metabotrópico 5/agonistas , Regulação para Cima/efeitos dos fármacos
17.
Brain Res ; 1771: 147660, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34529964

RESUMO

Since we found that inhibition of cyclooxygenase-2 (COX-2) with concomitant application of a metabotropic glutamate receptor subtype 5 (mGluR5) antagonist (MTEP) down-regulates mGluR7 in the hippocampus (HC) and changes behavior of mice, our team decided to investigate the mechanism responsible for the observed changes. The amino acid glutamate (Glu) is a major excitatory neurotransmitter in the brain. Glu uptake is regulated by excitatory amino acid transporters (EAAT). There are five transporters with documented expression in neurons and glia in the central nervous system (CNS). EAATs, maintain the correct transmission of the Glu signal and prevent its toxic accumulation by removing Glu from the synapse. It has been documented that the toxic level of Glu is one of the main causes of mental and cognitive abnormalities. Given the above mechanisms involved in the functioning of the Glu synapse, we hypothesized modification of Glu uptake, involving EAATs as the cause of the observed changes. This study investigated the level of selected EAATs in the HC after chronic treatment with mGluR5 antagonist MTEP, NS398, and their combination using Western blot. Concomitant MTEP treatment with NS398 or a single administration of the above causes changes in LTP and modulation of EAAT levels in mouse HC. As EAATs are cellular markers of oxidative stress mechanisms, the E. coli lipopolysaccharide (LPS) challenge was performed. The modified Barnes maze test (MBM) revealed alterations in the mouse spatial learning abilities. This study reports an interaction between the mGluR5 and COX-2 in the HC, with EAAT1 and EAAT3 involvement.


Assuntos
Ciclo-Oxigenase 2/fisiologia , Transportador 1 de Aminoácido Excitatório/biossíntese , Transportador 3 de Aminoácido Excitatório/biossíntese , Hipocampo/metabolismo , Estresse Oxidativo , Receptores de Ácido Caínico/fisiologia , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Transportador 1 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/genética , Lipopolissacarídeos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Ácido Caínico/antagonistas & inibidores , Aprendizagem Espacial/efeitos dos fármacos
18.
Biochem Pharmacol ; 192: 114729, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400127

RESUMO

Cyclooxygenase (COX) is a heme-containing enzyme that produces prostaglandins (PGs) via a pathway known as the arachidonic acid (AA) cascade. Two isoforms of COX enzyme (COX-1 and COX-2) and splice variant (COX-3) have been described so far. COX-2 is a neuronal enzyme that is intensively produced during activation of the synapse and glutamate (Glu) release. The end product of COX-2 action, prostaglandin E2 (PGE2), regulates Glu level in a retrograde manner. At the same time, the level of Glu, the primary excitatory neurotransmitter, is regulated in the excitatory synapse via Glu receptors, both ionotropic and metabotropic ones. Glu receptors are known modulators of behavior, engaged in cognition and mood. So far, the interaction between ionotropic N-methyl-D-aspartate (NMDA) receptors or metabotropic glutamate (mGluRs) receptors and COX-2 was found. Here, based on literature data and own research, a new mechanism of action of COX-2 in an excitatory synapse will be presented.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Agonistas de Aminoácidos Excitatórios/metabolismo , Humanos , Neurônios/patologia , Dor/metabolismo , Dor/patologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/patologia
19.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652672

RESUMO

Two series of novel 4-aryl-2H-pyrido[1,2-c]pyrimidine (6a-i) and 4-aryl-5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine (7a-i) derivatives were synthesized. The chemical structures of the new compounds were confirmed by 1H and 13C NMR spectroscopy and ESI-HRMS spectrometry. The affinities of all compounds for the 5-HT1A receptor and serotonin transporter protein (SERT) were determined by in vitro radioligand binding assays. The test compounds demonstrated very high binding affinities for the 5-HT1A receptor of all derivatives in the series (6a-i and 7a-i) and generally low binding affinities for the SERT protein, with the exception of compounds 6a and 7g. Extended affinity tests for the receptors D2, 5-HT2A, 5-HT6 and 5-HT7 were conducted with regard to selected compounds (6a, 7g, 6d and 7i). All four compounds demonstrated very high affinities for the D2 and 5-HT2A receptors. Compounds 6a and 7g also had high affinities for 5-HT7, while 6d and 7i held moderate affinities for this receptor. Compounds 6a and 7g were also tested in vivo to identify their functional activity profiles with regard to the 5-HT1A receptor, with 6a demonstrating the activity profile of a presynaptic agonist. Metabolic stability tests were also conducted for 6a and 6d.


Assuntos
Piridinas , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina , Animais , Células CHO , Cricetulus , Humanos , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/síntese química , Agonistas do Receptor 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
20.
Acta Histochem ; 123(3): 151685, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33556704

RESUMO

Insulin-like growth factor (IGF-1) affects almost all cells in the body. Extremely important functions of this growth factor have been demonstrated in the brain and the reproductive system of both, females and males. Also, it is considered as a pro-inflammatory cytokine adjusting tissue homeostasis. However, it seems to play a special role in the male reproductive system and it may be disturbed by the application of antidepressants with different mechanisms of drug action during therapy. To date, the effect of antidepressant-like substances (ALS) on the course of physiological processes in male testicular cells is poorly understood. Therefore, the purpose of the research was to determine the presence, localizationof IGF-1R (insulin-like growth factor 1 ß receptor) and mRNA gene expression of IGF-1R and IGF-1 after administration of 3-[(2-methyl-1,3-tiazol-4-yl)ethynyl]-pyridine (MTEP) and N-[2-(Cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) in the different scheme in the testis of mice. Imipramine was used as a reference drug having a documented interaction with the mGluR5 receptors. The immunohistochemical analyses showed the localization of IGF-1R in Sertoli, Leydig, and germinal cells after all used substances. Differences in receptor localization were observed depending on the drugs applied and the type of analyzed cells. In contrast, there was a significant increase in IGF-1 gene expression after IMI + NS-398 and in IGF-1R after MTEP + NS-398 and IMI + NS-398 administration. It can, therefore, be assumed that the use of a combination of NS-398 with some ALS may run different mechanisms of action and affect the regulation of reproductive function in mouse testis through maintaining homeostasis at the molecular and immunological levels related to IGF.


Assuntos
Antidepressivos/farmacologia , Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Testículo/metabolismo , Animais , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...